Aplicaciones estructurales de la cuña hiperbólica

Abstract

Analisis geométrico y estático de una forma espacial obtenida a partir de sectores de paraboloide hiperbólico, en procura de obtener una cipula de planta rectangular y bordes horizontales, apta para ser utilizada como cubierta industrial de hormigón armado. Se adopta una stuper/icie que, admitido su comportamiento en estado membranal, bajo la acción de las caryas permanentes se encuentra lilhre de esfuerzos de flexión en todos sus miembros de borde.

INTRODUCCION

El presente arniculo describo una estructura laminar desarrolliada para satisfacer simultáneamente un severo conjunto de requerimiantos planteado por la construcción de uno cublierta industrial de hormigón armado, requerimientos que podemos sintetizar asít
a) Naves ide planta rectanggular rapoyadas en sus cuakro vértioes, hacia los cuales deben escurrir las aguas piuvialos.
b) Posibilidad de crecimiento en cualquier dirección. (Módulo repetitivo de aprox. $15 \times 13 \mathrm{~m}$).
c) Bondes horizonitales, coincidentes con la alfura mínima solicitada para los ilocales, de modo de facilitar el aventanamiento o cierre ver. tical de cualquier módulo.
d) Iluminación y/o ventilación cenital.
e) Dada la prohibición de dejar tensores al aire o de construir contrafuertes de apoyo, quecia establecida do condición de nulidad de empujes horizontales en tos vinculos.

Por razones de indale económica agreguemos:
f) Superficies de idoble curvatura con miras a obtener formas para las cuales pueda asumir. se razonablemente el comporvamiento membranal.
g) Superficies doblemente regladas para facilitar la consitrucción de los moldes.

Para dar cumplimiento is estas condiciones, se adoptó uns combinadión de ocho ábulos en paraboloide hiperbólico de pianta triangular,
conformando una figura cuyas propiedades 5 ancilizan en to que sigue.

1) ELEMENTOS GEOMETRICOS

En ta fig. 1 se han representado las superficies regladas 1 y 2 , referidas a la tenna ortogonal X-Y-Z. Se trota de dos paraboloides hiperbólicos rectos y de eje vertical, que se interse: tan según la curve OM-S, y ouyas expresiones algebraicas son:

$$
\begin{equation*}
z_{1}=k x(y-b) \tag{1-1}
\end{equation*}
$$

En virtud de que

$$
\begin{equation*}
\frac{\partial_{2} z_{1}}{\partial x \partial y}-\frac{\partial_{2} z_{2}}{\partial x \partial y}=k \tag{1-2}
\end{equation*}
$$

las dos superficies tienen el mismo módulo de alabeo y por lo tanto son dos paraboloídes hiperbálicos idénticos que ocupan distintas posiciones en el espacio.

Por comodidad de openación, referiremos estas superficies a la terna ortogonal U-V-Z, elegiaa de modo de que el eje U contenga los puntos 0 y S. Las fórmulas para transformar las cordenadas son:

$$
\begin{align*}
& x=u \cos \alpha-v \operatorname{sen} \alpha \tag{1-3}\\
& y=u \operatorname{sen} \alpha+v \cos \alpha \tag{1-4}
\end{align*}
$$

en las cuales:
$\cos \alpha=\frac{a}{d} ; \operatorname{sen} \alpha=\frac{b}{d}$
que reemplazedas en $(1-3)$ y $(1-4)$:

$$
\begin{align*}
& x=\frac{u a-v b}{d} \tag{1-6}\\
& y=\frac{u b+v a}{d} \tag{1-7}
\end{align*}
$$

Si introducimos estos valores en (1-1 y (1-2) tendremos:
$z_{1}=k \frac{v a-v b}{d}-\left(\frac{w b+v a}{d}-b\right)$
$z_{z}=k \frac{u b-v a}{d}\left(\frac{v a-v b}{d}-a\right)$
Cuando en estas eotuaciones hacemos $v=0$ obtenemos:
$z_{1}=z_{2}=k u \frac{a b}{d}-\left(\frac{u}{d}-1\right)$
que es tla esuación de una parśbola de segundo grado contenida en el plano vertical U-Z. Y que constituye la arista de intersección de estas dos superficies.

Convendremas en Hamar "cuña hiperbólioz" a la forma superficial obtenida at edosar (fig. 1) dos casquetes tales como el O-R-S y O-P-S de modo de que tengan en común la arista parabólica O.M-S.

Una cuña hiperbólica queda definida cuando -además de su posición- se conocen sus tados a y b, y su módulo de alabeo k.

Si se verifica que los llados a y b son iguales, diremos que la cuña hiperbólica es equilátera.

La cuña hiperbúlica tiene una propiedad geométrica de gran importancia para su aplicación como estructura membranal. Para ponerla en evidencia procederemos a determinar la magnitud C tal quo: (fig. 2)

$$
\begin{equation*}
C=\operatorname{tg} \gamma_{1}+\operatorname{tg} \gamma_{2} \tag{1-11}
\end{equation*}
$$

siendo γ_{1} y γ_{2} los ángulos que las tangentes $n-n$ y $m-m$ trazadas por el unto T, forman respectivamente con el eje V-V.

Siendo $u=U_{1}$ la abscisa del punto genérico $T_{\text {, de lacuerdo con tas (1-8) y (1-9) tendremos: }}^{\text {d }}$

$$
\begin{gathered}
\operatorname{tg} \gamma_{1}=\frac{\partial z_{1}}{\partial v}=-k \frac{b}{d} \times \\
\times\left(\frac{v_{1} b+v a}{d}-b\right)+\frac{k a}{d^{2}}\left(u_{1} a-v b\right)
\end{gathered}
$$ $\operatorname{tg}_{w} \gamma_{z}$

$\operatorname{tg} \gamma_{2}=-\operatorname{tg} \gamma_{2}^{1}=-\frac{\delta z_{2}}{\delta v}=-1 \frac{k a}{d} x$

Sumiando ordenadamente y operando:

$$
\begin{equation*}
\mathrm{c}-\operatorname{tg} \gamma_{1}+\operatorname{tg} \gamma_{2}=\mathrm{kd} \tag{I-12}
\end{equation*}
$$

o sea que la suma de las tangentes de los ángulos γ_{1} y γ_{2} es independionto de u, por to tanto es la misma para cualquier sección paralela al plaro V-Z que se considere.

II) ESTABILIDAD DE LA CUNA HIPERBOLICA

En la fig. 3 se ha representado un cur̃o hiperbólica de vértices O-P-R-S vista según su proyección horizontal. Se supone que eill constituye una estructura membranal sometida e la acción de jas cargas verticales g, uniformemente distribuidas (*). En las mombranas 1 y 2 , las
(*) Para cuñas hiporbólicas muy rebajadas puede admitirse que el pcso propio está uniformemente distribuido sobre la proyección herizontal de la estructura. Sin embargo, es más conveniente, dar estricto cumplimiento a esa hipótesis de carga variando el espesor de la lámina de punto a punto. Para ello, si liamamos so al espesor de la mina en el punto de coordenadas $x=0, y=0$, y siendo of el espesor an al punto genérico x, y, deberá verificarse:

$$
\delta=-------\cdots-\cdots-----\cdots
$$

$$
\sqrt{7}_{1}^{7}+\left(\begin{array}{c}
\delta_{z} \\
-- \\
\delta x
\end{array}\right)^{2}+\binom{\delta_{z}}{\delta y}^{2}
$$

tensiones interness ofrecen un cuadro muy particular, definido por las expresiones:
$\mathrm{N}_{\mathrm{x}}-\mathrm{N}_{\mathrm{y}}=\mathrm{O} ; \quad \mathrm{N}_{\mathrm{x} y}=$ constante $=-\frac{\mathrm{g}}{2 \mathrm{k}}$
Las fuerzas que solicitan el arco parabólico O-S pueden estuciarse ei partir de sus proyecciones en el plano horizontal (magnitudes ficticias) que analizaremos en dos direcciones ortogonales:
a) Fuerzas distribuidas normales al plano U-Z. $N v_{1}=N v_{2}=-2 N x y$ sen $\approx \cos \alpha$
b) Fuerzas cistribuidas contenidas on of plano U-Z:

$$
\begin{equation*}
{\hat{N} v U_{1}}=\tilde{N} u_{3} \tag{II-3}
\end{equation*}
$$

Estas últimas se anulen entre sí por tener sentidos opuestos en ambes mambranas.
Por lo tanto sólo resta considerar el efecto de las $\tilde{N} v_{1}$ y $\tilde{N} v_{2}$. Para ello basto con observar el
corte practicado en la fig. 40, del cual surge el significado de las componentes verticales \bar{Q}, y \bar{Q}. que son las únicas activas, y que sumadas nos dan la fuerza Q (fig. 4b), de modo que:

$$
Q=\bar{Q}_{1}+\bar{Q}_{2}=\tilde{N} v_{1} \operatorname{tg} \gamma_{1}+\tilde{N} v_{2} \operatorname{tg} \gamma_{2}
$$

$y_{\text {, }}$ de acuerdo con (11-1) y (11-2):

$$
Q=-2 N x y \operatorname{sen} a \cos \alpha\left(\operatorname{tg} \gamma_{1}+\operatorname{tg} \gamma_{2}\right)
$$

Si aplicamos ahora la propiedad enuncieda en (1-12) y reempliazando Ñxy por su valor se tencrá:

$$
Q=g d \operatorname{sen} \propto \cos \alpha
$$

0 bien:

$$
\begin{equation*}
Q=-\frac{g a b}{d} \tag{11-4}
\end{equation*}
$$

El numerador de esta fracción es el peso total de la lámina, mientras que el denominador es la cuerda del arco parbólica O-S. Resulta en consecuencia que la estructura descansa integramente sobre el referido arco, transmitiéndole su peso como una carga uniformemente distribuida sobre su proyección horizontal. El arco parabólico O-S es, por lo tanto, antifunicuiar de las cargas Q. Conviene destacar que estas conclusiones están rigidamente subordinadas a la condición Nxy = constente. Cuando tal condición no se cumple, la arista parabólica queda sometida a un complejo sistema de cargas no coplanares que pueden dificultar seriamente las realizaciones prácricas, particularmente cuando la cuña hiperbólice no es equilátera.

Como se observa, esta figura geométrica ofrece posibilidades ventajosas para su utilización como estructurs membranal, dado que une a ta simplicided de generación (doblemente regiada), la ausencia de momentos flectores en sus ner-

FIGURA 5
vaturas de borde. Se presta asimismo para ser combinada de múltiples maneras, por ejemplo, edosando ouatro de ellas como se muestra on el modelo de la fig. 5.

iII) ESTABILIDAD DE SECTORES DE CUÑA HIPERBOLICA

Refiriéndonos a la fig. 6, si de la cuña hiperbó ica O-P-S-R extraemos un sector O.L-M. .N tal que:

$$
\overline{O N}=b_{n}=\mu b_{;} \overline{O L}=a_{e}=\mu a ;
$$

$$
\begin{equation*}
\overline{O M}=d_{0}=\mu d_{i} \tag{11H-1}
\end{equation*}
$$

donde u es un coeficiente menor que io unidad, en los bondes N-M y L-M aparecen esfuerzos debidos a las tensiones de mernhnana, dirigidos hacia el punto M. Estos esfuerzos tienen una componente vertical que tiende a levantor ta estructura.

Supongarnos shora que el sector en estudio se adose a otro sector simétrico dell lanterior respec10 del punto M. Este último sector se ha representado en la fig. 6 con línea de púntos y liene par vértices los puntos $\mathrm{M}^{\prime}-\mathrm{N}^{\prime}-\mathrm{O}^{\prime}$ - L '. Si efectuamos un corle de la figura así obtenida con un plano vertical que plase por O y O^{\prime}, obtendremos una traza como is indicada en ta fig. 7. Admitiendo que el arco quebrado $\mathrm{O}-\mathrm{M}-\mathrm{O}^{\prime}$ es un arco de tres articulaciones, analizaremos el equlibrio del mis-
mo bajo la acsión de las fuerzas que le transmiten las dos membranas adyacenres.

Las fuerzas que debemos considerar son:
a) Le fuerza uniformemente distribuida Q.
b) Las fuerzas $F_{1}, F_{2}, F_{1}^{\prime}, y F_{8}^{\prime}$ que corresponden a los bordes $N-M, L-M, M-N^{\prime}$ y $M L^{\prime}$ aplicadês al punto M .

Dado que las componentes horizontales de estas cuatro fuerzas se anulan dos a dos, la resultante es vertical y vale:

$$
\begin{equation*}
\mathrm{F}=4 \hat{\mathrm{~N}} x y \mathrm{f}_{0}=-\frac{2 \mathrm{gfo}}{k}- \tag{III-2}
\end{equation*}
$$

Pero según ilas scuaciones ($1-8$) y ($(1-9$) siendo f_{0} ta ordenaca correspondiente a $u=\mu \mathrm{c}$, se tendré:

$$
\begin{equation*}
f_{0}=k u a b(u-1) \tag{III-3}
\end{equation*}
$$

que reemplazada en (III-2):
$\mathrm{F}=-2 \mathrm{~g} \partial \mathrm{~b} \mu(\mu-1)$
(ili-4)
Por lo tanto, la reacción vertical en cada apoyo vaididí:
$V=Q \mu d-\frac{F}{2}=\frac{g a b}{d} \mu d+\frac{2 g \mu a b}{2}(\mu-1)$

$$
\begin{equation*}
V=\operatorname{gab} \mu^{2} \tag{111-5}
\end{equation*}
$$

Que es el peso del casquete de lados ra y ub. El equillbrio dol arco de tres articulaciones exige que la rescción honizontal H aplicada a cada apayo, cumpla con la condición de momento nulo respecto de M, o sea:

$$
H=\frac{V \mu d-\frac{Q \mu^{2} d^{2}}{2}-}{f_{0}}
$$

en la que reemplazando valores y operando:

$$
\begin{equation*}
H=\frac{\mu-\frac{1}{2}}{k(\mu-1)} \mu \mathrm{gd} \tag{III-6}
\end{equation*}
$$

El momento Hector en un punto genérico de abscisa U del arco $O-M-O^{\prime}$, tiene la siguien'e expresión:

$$
\begin{equation*}
M_{n}=V u-\frac{Q u^{2}}{2}-H z \tag{III.7}
\end{equation*}
$$

en la cual, remplazando valores resulta

$$
\begin{aligned}
M u= & g a b \mu^{2} u-\frac{g a b u^{2}}{2 d}-\frac{\mu-1 / 2}{k(\mu-1)} \times \\
& \times g^{d w} \frac{\text { kuah }}{d}-\left(\frac{u}{d}-1\right)
\end{aligned}
$$

$M u=\frac{g a b u}{2(\mu-1)}\left(1-2 \mu^{3}\right)\left(\frac{u}{c}-\mu\right)$
Según esta expresión, puede observarse que el coeficiente μ contrela tanto lo conformación geomérrica como el compoctamiento mecá vico de ta estructura. Eligiéndolo convenientemente, pueden obtenerse formers $d=$ interés para su aplicación práctica, como se verá a continuación.

IV) CUPULAS CUADRANGULARES CONSTITUIDAS POR SECTORES IDE CUÑAS HIPERBOLICAS

Reuniendo cuatro casquetes $d=$ cuña hiperbótira (fig. 8) de jados ma y $\mu \mathrm{b}$, se obtiene una cúpula de planta rectangular rle lardos $2 \mu a$ y $2 \mu b$.

Esta cúpule presenta cuatro bordes horizontales, en los que se pueden alojar cómodamente as armadures de tracción necesarias para equilibrar tanto los empujes producidos por los arcos, como los esfuerzos debidos a las fuerzas merrbranales. Para evitar deformaciones excesivas, es ruy conveniente posnensar esas armaduras.

Si se alribuye a μ el vaior:

$$
\begin{equation*}
\mu=\frac{\sqrt{2}}{2} \tag{IV-1}
\end{equation*}
$$

se obtiene una cúpula como la representada en ta fig 8, y según ia ezuación (III-8), los arcos triarticulados que le sustentan resultan libres de momentos flectores. Ls depresión que puede observarse en el centro de la cúpula la confiere un aspecto insólitc cue la aparta de lo que el juicio intuitivo aceptaría como un diseño efioiente.
Las figunas $9 \mathrm{a}, 9 \mathrm{~b}, 9 \mathrm{c}$ y 9 d muestran la realización próctica que dio origen al presente desarrollo. En este caso, los cuatro sectores de cuña hiperbálica que la constituyen fueron distanciados entre sí para dar cabida a los lucernarios requeridos por el provecto. El valor de μ adoptado es

FIGURA 9 a

FIGURA 9 c

FIGURA 9 b

FIGURA 9 d
ligeramente inferior al establecido en (IV-1) con el objeto de crear una componente dirigide hacia arriba capaz de equilibrar el peso de la linternia. (* *)

CONCLUSION:

Las conocides Jimitaciones de la teoría membranal imponen al proyectista de láminas una gran pruciencia y sensatez en la consideración de sus discrios, en procura de obtener estructuras suficientemente rígidas y sujetes o tensiones moderadas. Salvada esta dificultad, la aplicación de ese modelo matemático queda ampliamente justificada por una larga experiencia constructiva, con lo ventaja adicional de su timpieza y facilidad de operación. Enteridemos que existe aún un vasto campo inexpionado en esta rama de Ia estabilidad, particularmente en cuanto respecta al estudio de nuevas formas geoméricas. Para dar impulso é este proceso será neceserio elaborar y difundir métodos de cálculo simples y ráoídos, de modo de incorporarlos a la rutina de los constructores, sin el esfuerzo que represento el abordar los complejos desarro los matemáticos que propone la liferatura esperializada.

Con estó se enriquecerá no sólo el campo de las realizeciones concretas, sino también el de la investigación teórica, realimentada a su vez por la experiencia tangible que la práctica ofrece. Por otra parte, seria neceserio incluir en nuestros Reglamentos Técnicos las normas que regulen la construcción de estructuras laminares, normas que, con su doble función restrictiva y orientadora, coneribuirán sin duda el uso más generalizado de esters estructuras, sobre cuya racionalidad y economía huelga todo comentario.

Agradecimientos:

Agradezco al Ing. Justo Segura Godoy las observaciones formuladas con motivo de la obra que ilustra este trabajo, y al lng. Ricardo E. Snitcofsky su colaboración en el planteo y desarrollo analítico del mismo.
(*2) Para equilibrar una carga permanente P actuando en el centro do la cúpula sin intraducir momentos flectores en los arcos portantes, debe cumplirse la relación:

$$
\mu=\sqrt{\frac{1}{2}\left(1-\frac{P}{2 g a b}\right)}
$$

